

Influence of Information Theory on the 802.16 Wireless Standard

Relationships Between the Value of Wireless Links, Information Theory and Architectural Standards

Overview

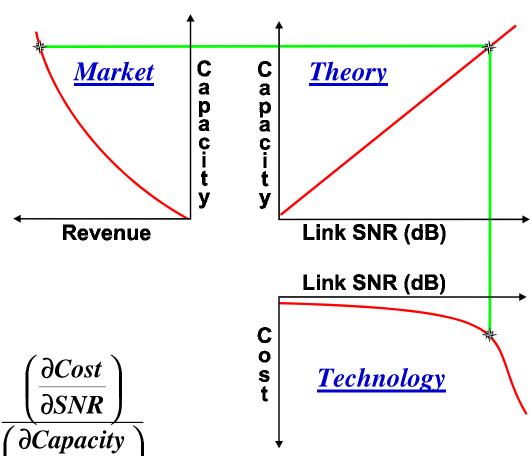
- What makes a wireless link valuable?
- How does theory impact link value?
 - What are the relevant theoretical limits?
 - How do these theoretical limits constrain link value?
- What is impact on the 802.16 standard?
- Summary

What makes a wireless link valuable?

- Capacity: the rate of reliable information transfer
- Link value is defined by *Return-on-investment (ROI)*
 - **Revenue** ∝ link capacity
 - $Investment \cong (Interface + modem + tuner + amplifier + antenna + BW) cost$

$$ROI \propto \frac{Link\ Capacity}{Total\ System\ Cost}$$

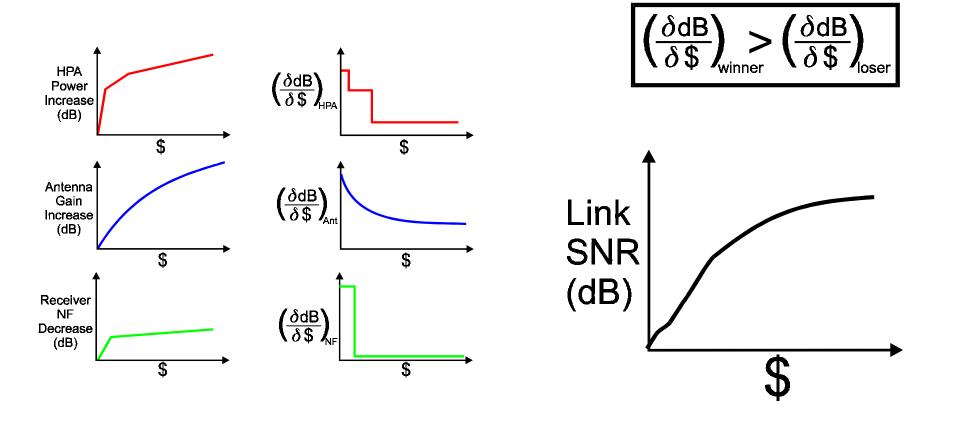
- Maximize ROI to maximize link value
 - -For PTP, maximize link capacity
 - -For PTM, maximize average aggregate link capacity


How does theory impact link value?

- Theory relates link capacity to link parameters
 - SNR
 - Error correction coding
 - Message length (packet size)
 - Link distortion
 - Synchronization
 - Sensitivity to implementation imperfections

These relations must be reflected in our standards

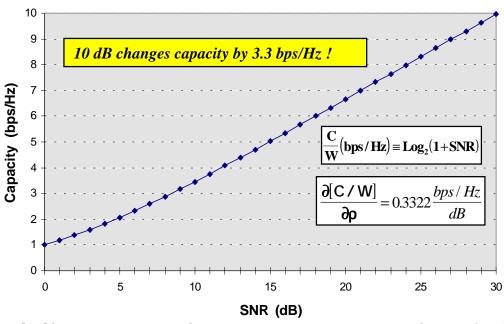
Link Capacity Value Paradigm


At market equilibrium:

$$\left(\frac{\partial \operatorname{Re} venue}{\partial Capacity}\right) = \left(\frac{\partial Cost}{\partial Capacity}\right) = \frac{\left(\frac{\partial Cost}{\partial SNR}\right)}{\left(\frac{\partial Capacity}{\partial SNR}\right)}$$

Example: Link Cost vs Link SNR

Link design is rationally related to component costs

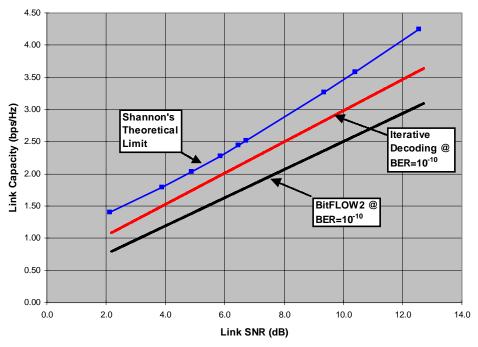


Limitation on Scope of Discussion

- Space-Time Processing (STP) is beyond scope
 - STP promises large capacity gains
 - Beamforming
 - Space-time coding
 - Transmit-diversity
 - Individual beams/links are each subject to SNR constraints
 - This briefing will *not* treat STP issues; big topic little time
- SNR determines capacity for individual links
 - Key fundamental capacity relationships have been derived
 - dependence on SNR
 - Link coherence
 - Link distortion
 - dependence on data block size

Link Capacity vs Link SNR

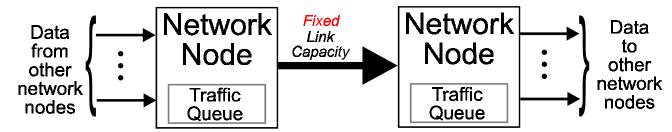
- Each dB of SNR can increase capacity 0.33 bps/Hz
- How can standards exploit this theoretical limit?
 - Better forward error-correction coding (FEC) enhances link capacity
 - Dynamic modulation/FEC further enhances average link capacity
 - MAC enhancements can also enhance capacity

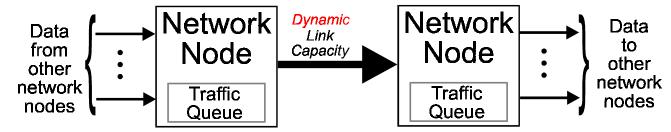

Better FEC enhances link capacity.

Current state of installed FEC technology

- CW data: concatenated PTCM/RS; 2-3 dB from Shannon
- Burst data: RS or BCH; 5-6 dB from Shannon

Emerging FEC features


- Iterative decoding
 - Parallel trellis ("Turbo")
 - Serial trellis
 - Block product
 - LDPC
- ≈1 dB from Shannon limit
- Affordability
 - Cost (shrinking \$/gate)
 - Power consumption

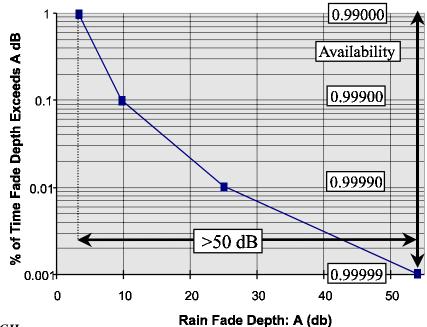


Management of Capacity Dynamics

• Wire-line

Wireless

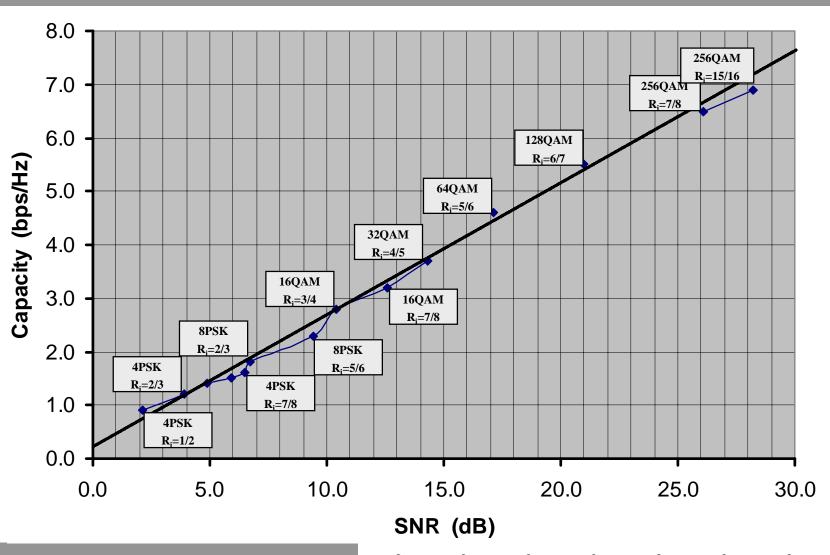
- An entirely new paradigm is required for wireless
 - Constantly <u>maximize capacity</u>, maintaining a <u>constant link BER</u>



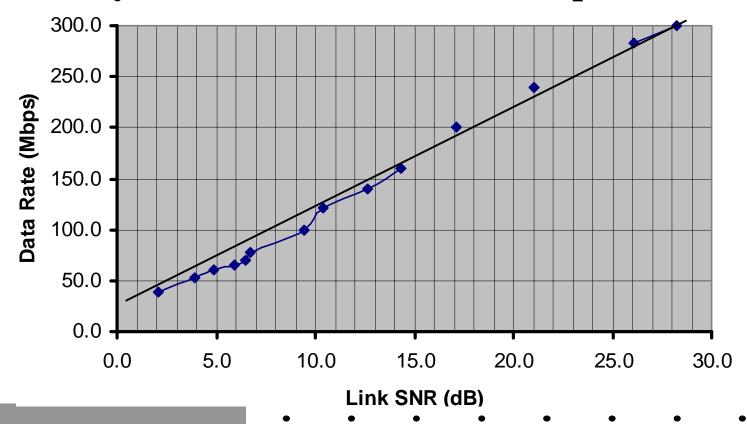
Benefits of Dynamic Modulation/FEC

- Link designed to support a fixed rate at .99999 availability
 - 99% of the time, greater than 50 dB (54 dB 4 dB) link margin exists [Ref: 1]
 - Goal: convert excess link margin into revenue-generating link capacity
 - Note: traffic committed at 0.99999 level is not impacted by adding 0.99 traffic

Potential Benefit

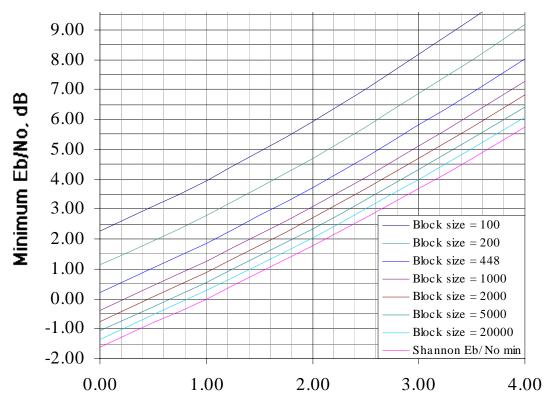

- 16 bps/Hz = (50 dB) x (0.33 bps/Hz/dB)
- Current LMDS networks: 2 bps/Hz
- Increased average capacity!
 - >4-fold increase is possible
- What is practical?

Ref: Path loss predictions based on ITU P.530-7; Region M (Dallas); 2.5 km links; 28 GHz


Capacity vs Link SNR: Typical Modem

Data Rate vs Link SNR: Example

• Assume: Channel Bandwidth = 50 MHz
Nyquist Factor (α) = 0.15
Symbol Rate = 43.5 Msps

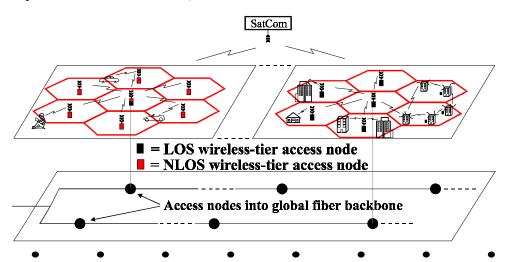

Does message length impact capacity?

- PTM traffic efficiency needs short transmissions
 - Packet/Cell issues
 - MAC issues
- FEC gain needs long code-blocks
 - Significant SNR loss incurred using short code blocks
- Reconciliation
 - Transmission blocks need not equal message lengths
 - Code blocks need not equal message length
 - Latency-critical voice can sacrifice BER with short code-blocks
 - Latency-insensitive data can improve BER with long code-blocks

FEC gain depends on code-block length.

- Longer message code-blocks improve FEC gain
 - 448-bit blocks lose ~2 dB compared to 20 kbit blocks

Bandwidth Efficiency, bits/sec/Hz


How does 802.16 reflect these limits?

- Dynamic modulation/coding
- Iterative decoding (optional)
- Variable packet length
 - Potential to evolve to multi-packet decoding
- Framework is in place to evolve the standard
 - Major accomplishment to find common ground
 - Basis for evolving the standard to reflect evolving needs

Whither Wireless Access?

- Broadband wireless connectivity may well evolve into multi-tier structure
- Tier 1: Non-line-of-sight (NLOS) mobile/fixed coverage
 - Transmit-diversity and OFDM: great coverage, but poor power-efficiency
 - Microcells:
 - solve power-inefficiency problem, since loss varies as R⁴
 - offer high capacity via frequency re-use
 - significantly increase infrastructure expense, with large increase in hubs required
- Tier 2: Line-of-sight (LOS) fixed connectivity
 - High-capacity LOS links connecting µcells to fiber backbone
 - Migration of functionality away from 'dumb' μcells to central hub

Summary

- Wireless link value is defined by link capacity and ROI
- Integrated wireless link value paradigm ties it all together
 - Market Forces + Information Theory (**IT**) + Component Technology (**CT**)
- Standards ideally reflect combined IT and CT aspects
 - Standards should emphasize value rather than standard components
 - Industry-driven standards tend toward this value-driven goal
 - "It's an obviously flawed system, but we can't seem to devise a better one."
- How is the 802.16 standard assisting wireless progress?
 - 802.16.3 will define NLOS standard
 - 802.16.1 is defining LOS standard
 - Provides basis for multi-tiered integrated wireless access framework
 - Provides wireless access infrastructure for other applications (e.g. 802.11)